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Some Problems on universal mappings

R.S.Ismagilov

Resume

First we describe inductive limits for some families of Lie algebras and groups. We also
consider the linear mappings from the space C=(S', R) (smooth functions on a circle) to
Lie algebras such that the following Local Commutatirity Property is satisfied: for ony two
functions with disjoint supports the corresponding elements of the Lue algebra commute;
we describe a universal mapping with this property.

1 Introduction

Mappings with the universality Property arisc in many ocasions; recall, for example. that
for linear spaces A, B the canonical mapping AX B— A@ Bs universal with respect to
bilinear mappings from A x B to linear spaces. In this paper we consider some universal
mappings for Lie algebras and groups. First we discuss some examples related to inductive
limits of families of the Lie algebras and groups. Then (in §2) we examine linear mappings
from C*(S’, R) to Lic algebras such that the local commutativity property 1s fulfilled;
this question originates from the "quantum field theory on a circle” ([1}).

2  Inductive limits

First recall the definition ([2]). Suppose we have a family of groups {G,} and for any G
and G a family (possibly empty) of homomorphisms fag : G. — Gjs. A representation of
the family {Ga, fag) in a group G consists (by definition) of homomorphisms u, : Go — G
such that the diagrams

G, 2o G
ug
fozﬁ l /
Gs

are commulative and G is generated by all ua(Go). The inductive limit of our {fam-
ily {Ga, fap} 1s, by delinition, a representation {G",uj,} with the following universality
Property: for any representation {G,uy} there exists a homomorphism p : G* — G with

u, = pou, forall a.

The group G~ can be described in terms of generators and relations; but the explicite
description usually turns out to be a difficult Problem.

For the family { L, fas} where L, are Lie algebras and fop : Lo — L homomorphisms
the inductive limit {L*,u>} is defined in the similar way.
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Now we consider some examples.

1. Heisenberg group (and Lic algebra) as inductive limit of commutative groups (com-
mutative Lie algebras). Consider a field K, chark # 2, a K - linear space V,dimV > 4.
and a bilinear form 7 : V' x V — K antisymmetrical and nondegenerate (i.e. for any
r € V,z # 0, there exists a vector y € V with 7(z,y) # 0). A linear subspace Vi C V
is called isotropical if 7 is zero on Vi x V;. Denote by Is{V,7) the set of all the isotrop-
ical subspaces. Any such subspace is considered as an commutative group (with re-
spect to the addition of vectors). For any two subspaces V4, V4 from Is(V,7) such that
Vo € Vi we have a homomorphism (inclusion) ¥5 C V). Our goal is to describe the
inductive limit of the family of groups Is(V,7) with these homomorphisms-inclusions.
To do this consider the Heisenberg group H - the set V x K with the group opcration
(vi, k1 )(v2, k2) = (vi + v, ki + k2 + 7(v1,v2)). For any Vo € Is(V,7) we have a group
homomorphism Vo — H,v — (v,0),v € V.

Theorem 1 The inductive limit of the family Is(V,T) is the Heisenberg group H ( with

homomorphisms indicated above).

Proof of Theorem 1 Consider an arbitary representation of our family Is(V, 1) in some
group (3. Clearly this representation is the same thing as a mapping ® : V. — G with the
following Property:
if vi e V,i=1,2,7(v1,v2) = 0,then ®(vy + vy) = $(vq)P(v2), (1)
&(0) = e (the neutral element of (/).
Examine closely the mapping © with this Property.

Lemma 1 We have . .

Gla+b) = @(5)(13(19)(1)(3), VYa,be V, (2)
Proof of Lemma 1 Recall that dimV > 4. charK # 2. From these conditions it follows
that there crist vectors a, 8 € Vo wilh

(a,a) =7(a,b) =0, 7(3,a)=7(3,b) =0

1 .
(o, 3) + 4—7((1?6) =0, (3
Write the vector a + b as a sum of four vectors as follows:
1 1 1 1
a+b=(;z*a+a)+(§b+ﬂ)+(§b—5)+(;a—a)

It follows from (3) that the sum of the first and the second vectors on the right side of the
last equality ts orthogonal (with respect to 7) to the sum of the third and fourth veclors.
Morcover the first and the second vectors are orthogonal and so arc also the third and the
fourth vectors. Thus the Property (1) implies

¢la+0b) = (I)((%a + o) + (%b + ﬁ))q)((%b —fB)+ (ga —a)) =
= (I)(%a + a)@(%b + ﬁ)<b(%b~ ﬂ)@(éa —a) =
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Define a ma;)ping w:VxV-oGby
w(a,b) = ¢(a + b)®(—b)®(—a),a,be V. (4)
Lemma 2 We have w(a,b)®(c) = ®(c)w(a,b) for all a,b,cc V.
Proof of Lemma 2 Applying (2) repeatedly we obtain
O(—c)w(a,b)d(c) = O(—c)®(a + D)(—b)B(~a)d(c) =

= (0 = B)(D(a + BO(~e)0(a -+ ) B(~5)(d(—a)B(c)(—a))b(a)
= ®(~a—b)®(2a +2b — c)®(—b)d(c — 20)9(a) =
= ®(~a—b)P(2a + 25— c)(P(—b)P(c — 2a)®(—b))0(5)®(a) =
= &(—a - b)®(2a + 2b — c)®(c —2a — 26)0(b)d(a) =
=®(~a - b)D(b)d(a).
Thus ®(—c)w(a, b)P(c) does not depend on c € V. Putting ¢ = 0 proves our Lemma.

1t follows from (1) and (}) that w(a,b) remains unchanged if we transform (a,b) as
follows:
(a,b) > (a'.b) where a—a' 1 a,a—a L b, (5)

or (a,b) — (a,b’) where b—1b' 1 a,b—b" Lb, (6)

(here L is orthogonalitswith respect to 7). Clearly 7(a,b) also remains intact under trans-

formation (5),(6).

Lemma 3 Let a,b,a’.l/ € V and T(a.b) = 7(a’ b)) # 0. Then the pair (a',b") can be
obtained from (a,b) applying a sequence of transformalions of the form (3) and (6).

Proof of Lemma 3 [t Via,b) and V(a'.¥') be lincar subspaces spanned by a,b and
a' . Let n be a rank of the bilinear Jorm 7(z,y),z € V(a, b),y € V(' b); notice that n
is simply the rank of the malriz

Consider the following cases. Case Iyn=0. Thus V(a,b) is orthogonal to V(da/, b'). In
this case the Lemma follows if we consider the transformations (a,8) = (a + o, b) —
(a+a,b) — (V). Case 2 V(a,b) = V(a',b). Take vectors a,b orthogonal to V(a, b)
and 7(ay,b;) = 7(a,b). Applying the case 1 we can pass from (a,b) to (a1,b1) (applying
@ scquence of transformations of the form (5), (6)) and then puss from (a1, 1) to (a', V).
Case 3, n = 1. Applying the case 2 we can assume that o' 1 a,a’ L b, 1 b, 7(a, V) =
7(a,b). The desired transformations are (a,b) — (a,b) — (a')V). Cuase 4;n = 2.
Applying the case 2 we can assume that o Loa,t Lbr(ab) = 7(a,b). Then to prove
our Lemma use the transformations (a,b) = (a',b) — (d,b).
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Now we can conclude the Proof of the Theorem I as follows. From Lemma 3 it follows
that if 7(a,b) = 7(a',b') then w(a,b) = w(a’,b’). Thus w(a,b) = r(r(a,b)) for some
mapping v : K — G. From ({) and Lemma 2 it follows that w(a + b, c)w(a,b) = w(a,b+
cw(b,¢), wla,0) =e. This easily gives r(0) = e,r(z +y) = r(z)r(y) for any z,y € K.
It follows that the mapping H — G, (v, k) — ®(v)r(k) is a homomorphism. This clearly
proves our Theorem.

Now consider subspaces Vy € [s(v,7) as commutative Lie algebras (over the field
K). The correspouding inductive limit is the Heisenberg Lie algebra V @ K with the Lic
bracket [(vi, k1), (v2, k2)] = (0, 7(k;, k2)). We do not dwell on this in details.

2. Lie algebras of vector fields. Consider two examples.

a) Let (X,w?) be a compact connected symplectic manifold; (see, for example, the
book [3], pp.123 for all the notions used in this section). By V(X,w?) denote the Lie
algebra of vector fields preserving the form w? and by Vo(X,w?) the Lie subalgebra
hamiltonian vector fields. So, for any £ € Vo(X,w?) we have a function (hamiltonian)
fe € C=(X,w?) such that df; = :({)w? where i({) denotes an inner product; fe is defined
up to an additive constant.

Consider all the domains Y C X diffeomorphic to R*™, dimX = 2n (we write ¥ =~
R¥). Tor any such Y denote by V,(Y,w?) the Lie subalgebra of all vector fields { €
V(X,w?) supported in Y (i.e. € is zero outside of a compact subset of Y). If ¥; C V3 then
we have an obvious inclusion homomorphism V,(Y7, uvz) — Vo(Ya, 21,'2). Now we describe
the inductive limit of the family of Lic algebras {V4(Y,w?), Y ~ R*"}.

Consider the direct sum of Lic algebras Vo(X,w?) & R and for any ¥ C X, Y o~ R*".
define an inclusion Vo(Y,w?) — W(X,w?) @ R, & — (&, [y fe(x)w™) where fe is the

hamiltonian of £ supported in Y.

Theorem 2 The Lie algebra Vo(X,w?) & R with the inclusions indicated above is the
inductive limil of {Vo(Y,w?),Y C X|Y ~ R**}.

The similar result for the corresponding family of diffcomorphism groups is also valid:
we do not counsider this case.

b) Let (X,v") be a compact connected manifold, dimX = n,n > 3, equipped with
a volume form v” (so X is oriented). For any domain ¥ C X,Y ~ R" denote Vu(V,v")
the Lie algebra of vector fields preserving the form v™ and supported in Y. By V(X v")
denote the linear span of all {V5(Y,v"),Y C X,Y =~ R"}. Now we describe the inductive
limit of the family of Lie algebras {V;(Y,v"),Y C X,Y =~ R"} with obvious inclusion
homomorphisms Vo(Y1,v™) C V(Y3 0") for ¥ C Y.

Let B* = E*(X) be the space of exterior k-forms onX, Z¥ = Z*(X) and B* = Bf(X)
the subspaces of closed and exact forms; put H* = H*(X) = Z*/B* (k- domensional
cohomologics of X). Consider the lincar space E""2/B"% and introduce a bracket [, ] in
it as follows. 10y and 0, are (n—2)-forms supported in a domain Y C X, Y ~ ", then put
[0, B2, 0,+B""?] = 03+ B"* where 03 C Y and vector ficlds ¢ € Vo(Y,v), b =1,2,3,
defined by i(&)e™ = dO salisly the equality [61,&] = €& The bracket [, ] is uniqly
determined by this rule and makes E"72/B™? a Lie algebra. Moreover it is a central
extension of Vp(X,v™) by the centre H*7%(X) considered as acommutative Lie algebra.
For any Y C X,Y ~ R™ we have an inclusion Vo(Y,v") — E"=2/B""2 € s 0 + B2
where 7(£)v™ = df and suppl C Y.
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Theorem 3 The Lie algebra E""2/ B"~% is the inductive limit of the family of Lie algebras
{(Vo(Y,o")Y C X,Y ~ R"}.

Similar results for diffeomorphism groups were obtained in [4]; they are more compli-
cated to formulate (and to prove).

3 Locally commutative mappings from the space
C>(S', R) to Lie algebras

Let C®(S', R) be the spase of smooth real functions on the circle S' and L an arbitrary
real Lie algebra. A linear mapping [ : C>(S', R) — L is called locally commutative if for
any two functions u,v from C*(S', R) having disjoint supports we have [f(u), f(v)] = 0.
Consider all the pairs (L, f) where L is aa Lie algebra and [ a locally commutative
mapping from C®(S', R) to L. The pair (L%, f*) is calleduniversalif for any pair (L, f)
there exists a Lie algebra homomorphismp : L™ — L with f = po f* and f*(L*) generates
L* as a Lie algebra. Now we describe (L, f~).

Consider the associative algebra A = A; @ A2 D ... where A; = C*(SY, R), Ay is the
space of jets of C®-functions u(zy, ..., %), 2i € S in the neighbourhood of the "diagonal”
T, =...=2z, fué€ Ay,v €A, then uv € Amyn is defined as a jet of the function
w(zy,. .o Zm)V(Tmats - o, Tman). Consider A as a Lie algebra with [u,v] = uv — vu and
denote by L* the Lie subalgebra generated by A;. We have a mapping f*: C*(SY, R) =
A C L.

Theorem 4 The pair (L™, f*) is universal.

To conclude this section slightly modify the notion of a locally commutative mapping.
Consider now only topological (locally convex) Lie algebras L and locally commutative
mappings f : C=(S!, R) — L subjected to the continuity condition which we now formu-
late. The mapping f has a prolongation fto the free Lie algebra F' = 1@ F,@. .. over the
linear space C=(S', R). Any Fj is embedded into (C=(S, R))m C C”O((Sl)k,R); this
last space consists of smooth functions u(z1,...,2a), i € S'. Consider only the mappings
f for which the mapping f is continious on any Fj with respect to Sobolev norm || - Hp
(maximum of modules of derivativer of order < p) restricted to Fi C C*((SY*, R). The
corresponding universal pair (for fixed p) denote by (L;, f;)- The explicite description of
it can be deduced from Theorem 4. We only consider the case p = 1. It turns out the L]
can be realized as the space of polinomials w7 + ...+ u,T™ where u; € C>=(S', R) and
T is a formal variable. The Lie bracket is defined by [uxT*,v,,T™] =0 if k> 2,m >
2, [T, v T™] = uy v T™, if m > 2 and [0, T,v;{T] = (uv} —ujvy) T
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